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Abstract. The existence of a denaturation temperature,Tc, in the folding of random
heteropolymers allows us to determine the distribution of enthalpy levels within the space of
contact patterns. The resulting statistics yield a metastable ensemble of foldings dynamically
dominant belowTc, and reproduce the relaxation dynamics of a disordered glassy material, in
accord with previous findings.

The biopolymer folding problem is central to molecular biophysics: the search for the active
or functional conformation performed by a biopolymer chain that forms intramolecular
interactions underin vitro solvent conditions is neither a downhill process nor the result of
a random exploration in conformation space [1–4]. Functional conformations are obtained
within a short biologically-relevant timeframe generallyincompatiblewith thermodynamic
timescales [5–7]. Moreover, an accumulation of counterexamples challenges the notion
that global free-energy minimization criteria might yield a generic predictive algorithm to
determine the active conformation [1–7].

Thus, a statistical theory of folding dynamics must at least warrant the existence of a
metastable folded phase regarded as a sharply concentrated ensemble of structures which are
the destinations of the manifold pathways realized in physically relevant timescales [1–3].
Furthermore, such a theory must account for kinetic control in the folding process [1–7],
while making the kinetics compatible with the denaturation–renaturation thermodynamics.
This implies that the dynamically dominant ensemble of folded states of the system must
actually undergo a phase transition, coexisting with the random coil (RC) at the denaturation
critical temperatureTc.

Within this context, the study of random heteropolymers is justified from a physicist’s
perspective, as the folding process may be cast in this case as the relaxation of a disordered
glassy material [8, 9]. Furthermore, the choice of a random sequence enables us to examine
the worst-performance limit case in the folding process and separate the properties inherent
to the process itself from those arising from natural selection.

To determine the statistics upon which the dynamics are built, we pick the enthalpyH

(H 6 0) of a folded state as the relevant coordinate, assigningH = 0 to the RC. This
choice is appropriate since enthalpy changes result from heat released and transferred to the
statistical bath (the solvent) due to intramolecular contact formation and, consequently, the
enthalpic content of a specific state depends directly on the contact pattern (CP) to which
the state is associated. Furthermore, the dynamics at the level of transitions between CPs
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are understood and have been effectively modelled [3, 5].Thus, our theory aims at defining
the statistical dynamics along a single coordinate,H , as a projection of the dynamics within
the CP space for random copolymers in the long chain limit.

Our theory is inspired by pre-existing models, such as the random energy model (REM)
[7, 10]. However, it is built upon the level distribution of a different thermodynamic variable
compatible with the appropriate coarse CP description of conformation space. Within the
CP space, the dynamics are determined following a general scheme [3, 6]: the kinetic
barrier B associated to a contact formation,B = B(loop), is entropic in nature since the
transition state entails a loop closure with the concurrent loss in conformational freedom
[5]: B(loop) ≈ −T 1S(loop), where1S(loop) is the entropy loss associated with loop
closure, already computed for any size loop [5]. On the other hand, the kinetic barrier
associated with contact dismantling,B = B(del), is of enthalpic origin, since deletion of an
intramolecular contact requires heat absorption in the same amount as that released,1H ,
upon formation of the contact. Thus, we getB(del) ≈ −1H .

We introduce the density of conformations with enthalpyH :�(H)/� = F(H), where
�(H) and� are, respectively, the number of conformations compatible with enthalpyH

and the total number of conformations. Thus, the entropyS = S(H) of a state with enthalpy
H is S(H) = R ln F(H) . In order to determineF(H), we make use of the fact that there
must exist a denaturation temperatureTc. Thus, atT = Tc, G(H) = 1G(H) is identically
zero irrespective ofH . The quantity1G(H) is the free energy change associated with the
transition from the RC to the folded state with enthalpyH . Then, the following relations
hold:

−RTc ln F(H) + H = 0 (1)

F(H) = exp(−|H |/s) (2)

1S = (R/s)1H (3)

wheres = RTc. SinceRT/s < 1 for T < Tc and given the nature of the kinetic barriers
involved in formation and dismantling of intramolecular contacts, equation (3) implies that
the folding is mostly delayed due to dismantling of ‘misfolded’ structure, in agreement with
current observations [1, 2, 4, 6].

In order to determine the statistical dynamics, we define the probabilityP(H, t) of
enthalpyH at time t , satisfying: P(H, t) = N(H, t)/N , where an ensemble of copies of
the system, each consisting of an individual polymer molecule, is assumed andN(H, t) and
N indicate respectively the number of molecules with enthalpyH at time t and the total
number of molecules in the ensemble. Thus, we define a master equation forP as follows:

∂P (H, t)/f ∂t = �(H)

∫ H

−∞
exp[(H ′ − H)/RT ]P(H ′, t) dH ′

−P(H, t)

∫ H

−∞
exp[(H ′ − H)/s]�(H ′) dH ′

+�(H)

∫ 0

H

exp[(H − H ′)/s]P(H ′, t) dH ′

−P(H, t)

∫ 0

H

exp[(H − H ′)/RT ]�(H ′) dH ′. (4)

The two sources of probability represented by the first and third terms in the right-hand
side of equation (4) give the positive rate of probability change due to elementary transitions
H ′ → H , from levels with enthalpyH ′ below and aboveH , respectively. The barrier
associated with the former transition isB = H − H ′ (H ′ 6 H ), while the latter transition
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requires surmounting a barrier of entropic origin:B = RT (H ′ −H)/s (H ′ > H ). The rate
contributions follow directly from equation (3), the computation of the kinetic barriers for
elementary transitions within the space of CPs and the general form of the unimolecular rate
constantr for a folding transition. This rate is computed as:r = f exp(−B/RT ), where
f ≈ 106 s−1 is the rate constant for contact formation once the nucleating event of loop
closure has taken place [5] andB is the kinetic barrier involved in the transition. On the
other hand, the two sinks of probability, given by the second and fourth terms, corresponds
to transitionsH → H ′. In this situation, wheneverH ′ 6 H (second term) the barrier is
entropic and it becomes enthalpic ifH ′ > H (fourth term).

Equation (4) may be integrated numerically with the appropriate initial condition:
P(H, 0) = δ(H − 0). This condition holds because folding is assumed to take place
when a renaturation temperatureT < Tc is re-established and thus, the starting point of the
process is the RC withH = 0. In order to monitor the dynamics, we follow the expected
enthalpy〈H(t)〉 at time t :

〈H(t)〉 =
∫ 0

−∞
HP(H, t) dH. (5)

The results are displayed in figure 1 for specific reduced temperaturesT ′. The following
notation has been adopted:τ = f −1; T ′ = (Tc − T )/Tc (T 6 Tc). The critical temperature
has been fixed atTc = 318◦K. The logarithmic time-dependent behaviour of〈H(t)〉 fits into
the physical picture of general relaxation dynamics for glassy disordered materials [7, 10],
thus corroborating the validity of the approach presented in this work. This relaxation
regime is invariably followed by a sudden asymptotic relaxation to a saturation enthalpy
value H = H(∞). Within this new regime,〈H(t)〉 remains almost constant, satisfying
|〈H(t)〉 − H(∞)| 6 10−5H(∞).

The saturation enthalpy may be easily determined: for a given enthalpyH we may
determine the ratioy(H) = r ↓ (H)/r ↑ (H), wherer ↓ (H) is the rate of downwards
transition in the enthalpy spectrum with starting pointH , andr ↑ (H) is the rate of upwards
transition:

y(H) =
∫ H

−∞
exp[(H ′ − H)/s]�(H ′) dH ′

/ ∫ 0

H

exp[(H − H ′)/RT ]�(H ′) dH ′. (6)

Figure 1. Time-dependent behaviour of the expected enthalpy〈H(t)〉, as obtained by numerical
integration of equation (4). The broken line indicates ideal logarithmic relaxation. The absissas
are dimensionless and given in logarithmic form with scaling constantτ = 1 µs. The ordinates
are given in units ofs = RTc. Two plots are given, corresponding to two choices of the reduced
temperatures:T ′ = 1/10 andT ′ = 1/100.
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In generaly(H) > 1 if H > H(∞), that is, starting at the RC (H = 0), there is on average
a tendency to increase the folding complexity by forming contacts until the saturation
enthalpy H = H(∞) is reached. The saturation enthalpy is defined as satisfying the
equationy(H) = 1. This gives

H(∞) = ln[(3RT − s)/2RT ]/(1/RT − 1/s). (7)

Since we get

lim
T →Tc

H(∞) = −s/2 while H(∞) = 0 if T > Tc (8)

we obtain atTc a first-order phase transition with latent heats/2, in qualitative agreement
with experimental findings rooted in calorimetric measurements of denaturation [11].

The time-dependent behaviour of the expected enthalpy displayed in figure 1 reveals
the existence of a metastable folded phase emerging as a dynamic equilibrium. This is so
since the minimum free energy realized isG = H(∞)− (RT/s)H(∞). On the other hand,
sinceG = (1−RT/s)H , the free energy may in principle decrease boundlessly in the limit
of long chains considered. Therefore, we may conclude that the metastable phase becomes
dominant as a dynamic equilibrium in the range 273◦K < T < Tc. Actually, no analysis is
required below the freezing point of the solvent (273◦K), since the folding process cannot
take place.

To summarize, our model is justified and corroborated on the following grounds:
(1) The relaxation dynamics below criticality reproduce the known relaxation behaviour

of disordered glassy materials.
(2) There exists a dynamically dominantmetastablefolded phase which undergoes

a first-order phase transition with latent heat at the critical temperature, in accord with
calorimetric experiments and with mounting evidence pointing towards the need for an
alternative predictive tool radically different from free-energy minimization algorithms.

This work was financially supported by the J S Guggenheim Memorial Foundation of New
York City through a fellowship awarded to the author.
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